

OPTICAL NETWORK TRANSCEIVER INNOVATOR

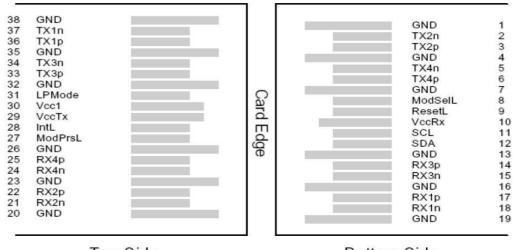
[QSFP-100G-SR4-S]

Multi-rate Parallel MMF 100/128G QSFP28 Optical Transceiver

Features

- Hot-pluggable QSFP28 form factor
- Supports 103.1Gb/s to 112.2Gb/s aggregate bit rate
- Power dissipation < 3.5W
- RoHS-6 compliant
- Commercial case temperature range of 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 100m on OM4 Multimode Fiber (MMF)
- 4x25Gb/s 850mm VCSEL-based transmitter
- 4x25G electrical interface
- Single MPO12 receptacle
- I2C management interface

Applications


- 100GBASE-SR4 100G Ethernet
- 128G Fiber Channel
- 4x28Gb/s Multimode OTN

100G QSFP28 transceiver modules are designed for use in 100 Gigabit Ethernet, 128GFC and 4x28G OTN client links over multimode fiber. They are compliant with the QSFP28 MSA1, 128GFC2 and IEEE 802.3bm 100GBASE-SR4 3 and CAUI-4 3. Digital diagnostics functions are available via the I2C interface, as specified by the QSFP28 MSA1. The transceiver is RoHS-6 compliant per Directive 2011/65/EU5.

OPTICAL NETWORK TRANSCEIVER INNOVATOR

Pin Descriptions

Top Side Viewed from Top Bottom Side Viewed from Bottom

Pin	Symbol	Symbol Name/Description				
1	GND	Ground	1			
2	Tx2n	Transmitter Inverted Data Input				
3	Tx2p	Transmitter Non-Inverted Data Input				
4	GND	Ground	1			
5	Tx4n	Transmitter Inverted Data Input				
6	Tx4p	Transmitter Non-Inverted Data Input				
7	GND	Ground	1			
8	ModSelL	Module Select				
9	ResetL	Module Reset				
10	Vcc Rx	+3.3V Power Supply Receiver	2			
11	SCL	2-wire serial interface clock				
12	SDA	2-wire serial interface data				
13	GND	Ground	1			
14	Rx3p	Receiver Non-Inverted Data Output				
15	Rx3n	Receiver Inverted Data Output				
16	GND	Ground	1			
17	Rx1p	Receiver Non-Inverted Data Output				
18	Rx1n	Receiver Inverted Data Output				
19	GND	Ground	1			

OPTICAL NETWORK TRANSCEIVER INNOVATOR

1			
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3V Power supply transmitter	2
30	Vcc1	+3.3V Power supply	2
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Тх3р	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Notes

1. Circuit ground is internally isolated from chassis ground.

Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range. Exceeding the limits below may damage the transceiver module permanently.

Form Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	TS	-40		85	°C	
Case Operating Temperature	TOP	-5		75	°C	
Relative Humidity	RH	1.5		85	%	1
Receiver Damage Threshold, per Lane	PRdmg	5.5			dBm	

Notes:

1. Non-condensing.

3

OPTICAL NETWORK TRANSCEIVER INNOVATOR

Electrical Characteristics (EOL, TOP = 0 to 70°C, VCC = 3.135 to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135		3.465	V	
Supply Current	lcc			1.5	А	
Module total power	Р			3.5	W	1
		Transmitt	er			
Signaling rate per lane		25.78		28.05	Gb/s	2
Differential data input voltage per lane	Vin,pp,diff			900	mV	
Single-ended voltage tolerance	Vin,pp	-0.35		+3.3	V	
Module stress input test			ion 13.3.11.2. CEI-28G-VSR	1, OIF		
		Receive	r			
Signaling rate per lane		25.78		28.05	Gb/s	2
		100		400		3
		300		600		
Differential data output swing	Vout,pp	400	600	800	mVpp	
		600		1200		
Eye width		0.57			UI	
Eye height, differential		228			mV	
Vertical eye closure	VEC	5.5			dB	
Transition time (20% to 80%)	Tr, Tf	12			ps	

Notes:

1. Maximum total power value is specified across the full operational temperature and voltage range when CDRs are locked or a lack of input signal results in squelch being activated. If incorrect frequencies cause the CDRs to continuously attempt to lock, maximum power dissipation may reach 4.5 W.

2. ± 100ppm

3. Output voltage is settable in 4 discrete ranges via I2C. Default range is 400 – 800 mV.

Optical Characteristics (EOL, TOP = 0 to 70°C, VCC = 3.135 to 3.465 Volts) Optical

characteristics are dependent on data rate and protocol. Ethernet 100GBASE-SR4, OTU4, and 128G

Fibre Channel optical characteristics are as follows:

OPTICAL NETWORK TRANSCEIVER INNOVATOR

100GBASE-SR4 Ethernet Operation

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
		Transmit	ter			
Signaling Speed per Lane		25.	78125 ± 100pp	Gb/s	1	
Center wavelength		840		860	nm	
RMS Spectral Width	SW			0.6	nm	
Average Launch Power per Lane	TXPx	-8.4		2.4	dBm	
Transmit OMA per Lane	TxOMA	-6.4		3	dBm	
Launch Power [OMA] minus TDEC per Lane	P-TDEC	-7.3			dBm	
TDEC per Lane	TDEC			4.3	dBm	
Optical Extinction Ratio	ER	2			dB	
Optical Return Loss Tolerance	ORL			12	dB	
Encircled Flux	FLX		86% at 19 um 30% at 4.5 um			
Average Launch Power of OFF Transmitter, per Lane				-30	dBm	
Relative Intensity Noise	RIN				dB/Hz	
Transmitter Eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.3,0.38	3,0.45,0.35,0.4	1,0.5}		2
		Receive	r			
Signaling Speed per Lane		25.	78125 ± 100pp	m	GBd	3
Center wavelength		840		860	nm	
Damage Threshold	DT	-3.4			dBm	
Average Receive Power per Lane	RXPx	-10.3		2.4	dBm	4
Receive Power (OMA) per Lane	RxOMA			3	dBm	
Receiver Reflectance	Rfl			-12	dB	
Stressed Receiver Sensitivity (OMA) per Lane	SRS			-5.2	dBm	
	:	Stressed Cond	ditions:			
Stressed Eye Closure	SEC		4.3		dB	
Stressed Eye J2 Jitter	J2		0.39		UI	
Stressed Eye J4 Jitter	J4		0.53		UI	
OMA of each aggressor lane			3		dBm	
Stressed Receiver Eye Mask Definition {X1, X2, X3, Y1, Y2,		{0.28,0	5,0.5,0.33,0.33	3,0.4}		5

5

http://www.nsystems.co.kr

Y3}						
LOS De-Assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5	2		dB	

Notes:

1. Transmitter consists of 4 lasers operating at a maximum speed of 25.78125Gb/s ±100ppm each.

2. Hit Ratio 1.5 x 10-3 hits/sample.

3. Receiver consists of 4 photodetectors operating at a maximum speed of 25.78125Gb/s ±100ppm each.

4. Minimum value is informative only and not the principal indicator of signal strength.

5. Hit Ratio 5 x 10-5 hits/sample.

OTU4 and 128 G Fibre Channel Operation

Parameter	Symbol	Min	Тур	Max	Unit	Ref.					
Transmitter											
Signaling Speed per Lane		27.95		28.05	Gb/s	4					
Center wavelength		840		860	nm						
RMS Spectral Width	SW			0.6	nm						
Average Launch Power per Lane	TXPx	-9		2.4	dBm						
Transmit OMA per Lane	TxOMA	-7.1		3.0	dBm						
Launch Power [OMA] minus TDEC per Lane	P-TDEC	-8.0			dBm						
TDEC per Lane	TDEC			5.0	dBm						
Optical Extinction Ratio	ER	3			dB						
Encircled Flux	FLX	>86% at 1	.9um, <30% at	: 4.5um	dBm						
Average Launch Power of OFF Transmitter, per Lane				-30	dBm						
Transmitter Eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.31,0.42	1,0.46,0.35,0.3	38,0.50}		5					
Optical Return Loss Tolerance	ORL			12	dB						
		Receive	r								
Signaling Speed per Lane		27.95		28.05	Gb/s	6					
Center wavelength		840		860	nm						
Damage Threshold	DT	3.4			dBm						
Average Receive Power per Lane	RXPx	-10.9		2.4	dBm	7					
Receive Power (OMA) per Lane	RxOMA			3.0	dBm						

OPTICAL NETWORK TRANSCEIVER INNOVATOR

Receiver Reflectance	Rfl			-12	dB	
Stressed Receiver Sensitivity (OMA) per Lane	SRS			-4.7	dBm	8
Stressed receiver eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.29,0.50,0.50,0.35,0.35,0.40}				9
LOS De-Assert	LOSD			-13	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5	2		dB	

Notes:

6. Transmitter consists of 4 lasers operating at a maximum speed of 27.95 Gb/s each for OTU4 and 28.05 Gb/s each for Fibre Channel.

7. Hit ratio = $1.5 \times 10-3$ hits/sample.

8. Receiver consists of 4 photodetectors operating at a maximum speed of 27.95 Gb/s each for OTU4 and 28.05 Gb/s each for Fibre Channel.

9. Minimum value is informative only and not the principal indicator of signal strength.

10. Test conditions for measuring SRS are defined as follows:

Stressed eye closure, lane under test	SEC	5.0	dB
Stressed eye J2 jitter, lane under test	J2	0.38	UI
Stressed eye J4 jitter, lane under test	J4	0.51	UI
OMA of each aggressor lane		3	dBm

Stressed Eye Closure (SEC) is measured per IEEE 802.3 95.8.8 (reference [22]), but adjusted to

1x10-6 instead of 1x10-5 bit error ratio. Thus SEC is given by SEC = 10log10[OMA/(2* 4.2649 * R)] with R as defined by equation (95-3) in 95.8.5, The values of M1 and M2 in equation (95-3) are set to zero. The combination of the O/E and the oscilloscope used to measure the waveform has a fourth-order Bessel-Thomson filter response with a bandwidth of 19.34 GHz.

11. Hit ratio = 1 x 10-5 hits/sample.

General Specifications

Form Parameter	Symbol	Min	Тур	Max	Unit	Ref.		
Bit Rate (all wavelengths combined)	BR			112.2	Gb/s	1		
Bit Error Ratio @25.78Gb/s	BER1			5x10-5		2		
Bit Error Ratio @27.95Gb/s	BER2			10-6		3		
Bit Error Ratio @28.05Gb/s	BER3			5x10-5		2		
Maximum Supported Distances								
Fiber Type								

http://www.nsystems.co.kr

OPTICAL NETWORK TRANSCEIVER INNOVATOR

OM3 MMF	Lmax1		70	m	4
OM4 MMF	Lmax2		100	m	4

Notes:

- 1. Supports 128GFC per T11, 4x28G multimode OTN and 100GBASE-SR4 per IEEE 802.3bm.
- 2. Tested with a 2^{31} 1 PRBS.
- 3. Tested with a 2³¹ 1 PRBS. The BER of 10-12 for the OTU4 (112 Gb/s) application code is required to be met only after forward error correction has been applied. ITU-T G.sup39 defines the pre-FEC BER to be met as 10⁻⁶. The values for receiver sensitivity and optical path penalty measured at the receiver output at a BER of 10⁻⁶ will normally be conservative estimates of the values for receiver sensitivity and path penalty at the BER of 10⁻¹² after the FEC decoder.
- 4. Requires FEC on the host to support maximum distance.

Environmental Specifications

QSFP28 transceivers have a commercial operating case temperature range of 0°C to +70°C. They can

support temporary excursions to case temperatures of -5°C and +75°C without permanent damage.

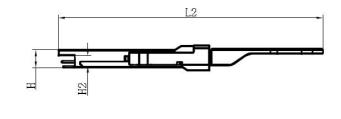
Form Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Case Operating Temperature	Тор	0		70	°C	
Storage Temperature	Tsto	-40		85	°C	

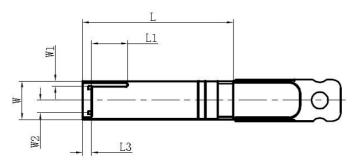
Regulatory Compliance

QSFP28 transceivers are Class 1 Laser Products. They are certified per the following

standards:

Feature	Agency	Standard				
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50				
Laser Eye Safety	ΤÜV	EN 60825-1:2007 EN 60825-2:2004+A1+A2				
Electrical Safety	TÜV	EN 60950				
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87				


Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.



OPTICAL NETWORK TRANSCEIVER INNOVATOR

Mechanical Design Diagram (mm)

QSFP28 transceivers are compatible with the QSFP28 MSA specification.

Unit: mm

	L	L1	L2	L3	W	W1	W2	Н	H1	H2
MAX	72.2		122	4.35	18.45		6.2	8.6	12.0	5.35
Typical	72.0		Ļ	4.20	18.35	Ĩ		8.5	11.8	5.2
MIN	68.8	16.5	118	4.05	18.25	2.2	5.8	8.4	11.6	5.05